

Section: 05

CHEMICAL PROFILE AND DEREPLICATION OF METABOLITES FROM *Lasiodiplodia* sp. USING DIFFERENTIAL ^1H NMR AND SIMILARITY CALCULATION

Lucas Silva Tironi^{1*}, Jan Schripsema², Jaine Honorata Hortolan Luiz¹

lucas.tironi@sou.unifal-mg.edu.br

1- *Instituto de Química, Universidade Federal de Alfenas, R. Gabriel Monteiro da Silva, 700, Alfenas, MG, 37130-001, Brazil.* 2- *Grupo Metabolômica, Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.*

Endophytic fungi are recognized for producing a wide variety of specialized metabolites, often with complex and diverse chemical structures. In this study, the chemical profile of organic extracts obtained from the fermentation of *Lasiodiplodia* sp., an endophyte isolated from *Handroanthus impetiginosus*, was investigated. The extracts were analyzed by ^1H NMR, and their spectra were processed using SIMBA software (Schripsema, 2019) to assess similarities and differences throughout the cultivation period. Spectral comparison enabled a comprehensive analysis of the biosynthetic profile of this fungus. Furthermore, detailed 1D and 2D NMR analysis of extract POLD-14 led to the identification of two known compounds: 3-carboxy-2-methylene-4-heptanolide and decumbic acid. All NMR spectra were acquired using a Bruker 400 MHz spectrometer and processed with TopSpin 4.1.4 software. These findings highlight the potential of *Lasiodiplodia* sp. as a promising source of bioactive compounds and reinforce the relevance of NMR as a dereplication tool in complex mixtures. The authors acknowledge the financial support provided by FAPEMIG.

Keywords: *Lasiodiplodia, similarity and differential ^1H NMR, dereplication, specialized metabolites*